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Glycogen storage disease type Ia (GSDIa)
but not Glycogen storage disease type Ib
(GSDIb) is associated to an increased risk of
metabolic syndrome: possible role of
microsomal glucose 6-phosphate
accumulation
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Abstract

Background: In GSDIa, glucose 6-phosphate (G6P) accumulates in the endoplasmic reticulum (ER); in GSDIb, G6P
levels are reduced in ER. G6P availability directly modulates the activity of 11β-hydroxysteroid dehydrogenase type
1 (11βHSD1), an ER-bound enzyme playing a key role in the development of the metabolic syndrome (MS).

Objective: To evaluate the prevalence of MS and Insulin Resistance (IR) in GSDIa and GSDIb patients.

Patients and Methods: This was a prospective study. All the enrolled patients were followed at the Department
of Pediatrics “Federico II” University of Naples for 10 years. Clinical and biochemical parameters of MS and the
presence of IR were recorded. The results were correlated with the biochemical parameters of GSDI-related metabolic
control. 10 GSDIa patient (median age 12.10 ± 1.50), 7 GSDIb patients (median age 14.90 ± 2.20 were enrolled in the
study. They were compared to 20 and 14 age and sex matched controls, respectively. 10 GSDIa patients (median age
24.60 ± 1.50) and 6 GSDIb patients (median age 25.10 ± 2.00) completed the 10-year-follow-up. At the end of the study
the patients’ data were compared to 10 and 6 age and sex matched controls, respectively.

Results: At study entry, 20 % GSDIa patients had MS and 80 % showed 2 criteria for MS. GSDIa patients showed higher
HOMA-IR than controls and GSDIb patients (p < 0.001, p < 0.05), respectively. Baseline ISI was lower in GSDIa than
controls (p < 0.001). QUICKI was significantly lower in GSDIa than in controls (p < 0.001). At the end of the study
70 % of GSDIa patients had MS and 30 % showed 2 criteria for MS. HOMA-IR was higher in GSDIa than controls
(p < 0.01). Baseline ISI was higher in GSDIb than controls (p < 0.005) and GSD1a (p < 0.05). QUICKI was lower in
GSD1a patients than in controls (p < 0.03). VAI was higher in GSDIa patients than controls (p < 0.001) and GSDIb
patients (p = 0.002).

Conclusions: Our data showed high prevalence of IR and MS in GSDIa patients. We speculate a possible role of
11βHSD1 modulation by G6P availability. We suggest a routine metabolic assessment in GSDIa patients.
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Background
Metabolic syndrome (MS), one of the most common
clinical conditions nowadays, represents a combination
of cardiometabolic risk determinants, including visceral
obesity, insulin resistance (IR), hypertension, glucose
intolerance or diabetes and dyslipidemia [1]. Recent
studies in humans and rodents suggest a role of 11β-
hydroxysteroid dehydrogenase (11β-HSD) in the devel-
opment of idiopathic obesity and MS [2]. The increased
11β-HSD1 activity in adipose tissue in obese rats and in
some but not all studies of obese humans causes visceral
obesity and its metabolic consequences [3].
Mouse model with selective liver 11β-HSD1 overexpres-

sion show IR, dyslipidemia, and hypertension, but unaltered
adiposity. The elevated levels of insulin detected in re-
sponse to glucose challenge together with increased fasting
insulin levels in older mice suggest that they progressively
develop IR. The mechanisms involve both direct effects on
target gene expression in the insulin signaling pathway and
the alteration of other key transcriptional regulators of lipid
homeostasis [4].
Conversely, 11β-HSD1 null mice exhibit a protective

glycemic, lipid, and lipoprotein profile and show increased
expression of hepatic mRNAs encoding regulators of fatty
acid beta-oxidation. These 11βHSD1 knock-out mice are
resistant to the development of MS [5–7]. In addition
pharmacological inhibition of 11βHSD1 has been associ-
ated to beneficial effects on weight, glycemic control and
lipid profile in humans [8, 9].
11βHSD1 is an ER-bound enzyme catalyzing the con-

version of inactive cortisone in active cortisol in humans.
It is typically expressed in glucocorticoid receptors-rich
tissues, such as the liver, adipose tissue, lung and brain.
11βHSD1 requires NADPH as a cofactor generated by
the hexose-6-phosphate dehydrogenase (H6PDH)-me-
diated conversion of glucose 6-phosphate (G6P) to 6-
phosphogluconactone (6PGL) [10]. Down-regulation
of hepatic 11βHSD1 transcription has been observed
in diabetic mice transfected with glucose-6-phosphate
translocase (G6PT) antisense oligonucleotides [11].
Glucose-6-phosphatase (G6Pase) system catalyzes the

hydrolysis of glucose 6-phosphate (G6P) to glucose and
inorganic phosphate. It is a multicomponent system of
proteins located in the endoplasmic reticulum that
comprises a catalytic subunit (G6PC) and the transporter
for G6P (G6PT). G6PT (encoded by SLC37A4 gene) trans-
locates G6P, the product of gluconeogenesis and glycogen-
olysis, from the cytoplasm to the lumen of the endoplasmic
reticulum (ER), where G6P is converted into glucose and
phosphate by G6PC [12, 13].
The G6PC gene is expressed predominantly in neo-

glucogenetic organs such as liver, kidney, lower levels
in intestine and also pancreatic islets. Mutations of
G6PC causes glycogen storage disease type 1a (GSD1a,
MIM23.2200), whereas mutations of SLC37A4 causes
GSD type 1b (GSD1b, MIM23.2200). Since the G6Pase
complex has a key role in glycogenolysis and gluconeogen-
esis, both disorders are characterized by a typical metabolic
profile with fasting hypoglycemia, hepatomegaly, nephro-
megaly, hyperlacticacidemia, hyperlipidemia, overweight
and hyperuricemia [14]. Long term complications include:
hepatic adenomas, renal failure and neurocognitive dys-
function [15]. In addition, GSD1b patients present neutro-
penia and/or neutrophil dysfunction, great susceptibility
to recurrent bacterial infections and an increased risk of
autoimmune disease [16].
It has been previously shown that G6P availability dir-

ectly modulates 11βHSD1 activity. In GSDIa, the G6P ex-
cess in ER (due to G6Pase deficiency) has been associated
to increased 11βHSD1 activity, while in GSDIb the lack of
G6P in ER (due to G6PT deficiency) has been associated
to decreased 11βHSD1 activity [17].
Therefore it may be hypothesized that GSD1a patients

are at risk to develop MS, conversely GSD1b should be
protected from this complication.
The aim of the present study was to evaluate the

prevalence of MS and IR in GSDIa and GSDIb patients.

Patients
Seventeen GSDI patients were enrolled. They represent
the entire case load of GSD1 patients followed at the
Department of Pediatrics “Federico II” University of
Naples. No selection criteria were considered. At study
entry GSDIa patients (4 males and 6 females) had a me-
dian age of 12.10 ± 1.50. GSDIb patients (2 males and 5
females) had a median age of 14.90 ± 2.20. These pa-
tients were followed for a 10 year-period. At the end of
the study GSD1a patients (4 males and 6 females) had a
median age of 24.60 ± 1.50 and GSD1b patients (2
males and 4 females) a median age of 25.10 ± 2.00. One
GSD1b patient died during follow-up. The diagnosis of
GSDIa and GSDIb was based on mutation analysis of
the G6PC and SLC37A4 gene, respectively. All patients
were on dietary treatment.

Study design
The study protocol was in accordance with the Italian
regulations on privacy protection and with the Helsinki
Doctrine for Human Experimentation.
Seventeen GSDI patients were enrolled. At study entry,

GSDIa patients (4 males and 6 females, median age 12.10 ±
1.50) were compared to 20 age and sex matched controls.
GSDIb patients (2 males and 5 females, median age
14.90 ± 2.20) were compared to 14 age and sex matched
controls. The patients were followed for a 10 year-
period. Biochemical data were recorded at study entry,
every year during follow-up and at the end of the study.
At the end of the study GSD1a patients (4 males and 6
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females, median age 24.60 ± 1.50) and GSD1b patients
(2 males and 4 females median age 25.10 ± 2.00) were
compared to 16 controls (6 males and 10 females median
age 26.10 ± 1.70).
To investigate the prevalence of MS in GSD1 patients,

MS criteria in according to International Diabetes Feder-
ation (IDF) guidelines were recorded. IR is a hallmark of
obesity and MS. Therefore, quantitative assessment of IR
is of a great importance for detecting its presence and
assessing its severity. Various methods are currently
employed. Direct methods (e.g. hyperinsulinemic euglyce-
mic glucose clamp) are the reference techniques. However
they are complex, time-consuming and invasive proce-
dures. Surrogate indexes are the most commonly used.
They represent inexpensive quantitative tools that can be
easily applied in clinical research investigations and clin-
ical practice. To minimize the limitations of each index
more than one index should be used simultaneously [18].
Among these Homeostasis model assessment of Insulin
Resistance (HOMA-IR), Insulin sensitivity index (ISI) and
Quantitative insulin sensitivity check index (QUICKI)
have been extensively validated [19, 20]. Recently the
visceral adiposity index (VAI) has been proposed as an
indicator of IR and adipose tissue dysfunction. VAI is a
sex-specific mathematical index based on Waist circumfer-
ence (WC), Body Mass Index (BMI), triglycerides (TG) and
HDL cholesterol (HDL-C) that showed a strong association
with both the rate of peripheral glucose utilization and vis-
ceral adipose tissue [21]. VAI has been proposed as an easy
tool for early detection of a condition of cardiometabolic
risk. One important limitation to consider is the application
in patient aged less than 16 years: VAI should not be
applied in this age range because the numerical factors
considered are derived from healthy adult population [21].
In the present study IR was assessed by evaluation of

HOMA-IR, baseline ISI, QUICKI and VAI.
At study entry, considering that the majority of pa-

tients were children they had shorter fasting time than
controls. In addition considering that the majority of pa-
tients were aged less than 16 years, VAI was evaluated
only in 3 GSDIa and in 3 GSDIb patients. To overcome
the bias due to patients short fasting time, at the end of
the study, when all the patients were adult, the control
subjects were asked to have blood sampling after the
same fasting time of his/her age and sex matched patient.

Methods
Clinical and biochemical parameters of GSD1-related
metabolic control
The following clinical parameters were recorded: height
SDS score, BMI, waist circumference WC, systolic and
diastolic blood pressure (BP). Biochemical parameters in-
cluded: fasting plasma glucose (FPG), TG, cholesterol, lac-
tic and uric acid levels, bicarbonate, baseline fasting
insulin serum levels. The compliance to the dietary or
medical treatment was also recorded.

Metabolic syndrome and IR assessment
MS was defined according to IDF guidelines. For children
and adolescents (age less than 16 years) to be defined as
having the MS the patients must have at least 3 of the
following criteria: WC> 90th percentile, TG > 150 mg/dL,
HDL-C < 40 mg/dL, systolic BP > 130 mmHg or diastolic
BP > 85 mmHg, fasting plasma glucose (FPG) > 100 mg/dL
or known type 2 diabetes mellitus. For adults (age more
than 16 years) to be defined as having the MS the patients
must have at least 3 of the following criteria: WC> 94 cm
in males and >80 cm in females, TG > 150 mg/dL,
HDL-C < 40 mg/dL in males and < 50 mg/dL in fe-
males, systolic BP > 130 mmHg or diastolic BP > 85 mmHg,
FPG: > 100 mg/dL or previously diagnosed type 2 diabetes.
HOMA-IR was calculated as following: (FPG mmol/L

x Fasting Insulin μU/mL)/ 22.5. Basing on HOMA-IR
values patients were divided into two groups: non-IR
(HOMA-IR < 2.5) and IR (HOMA-IR > 2.5) [22].
Baseline ISI was calculated as following = 10,000/(fasting

insulin [μU/ml] × FPG [mg/dl]). QUICKI was calculated
as following: 1/[Log Fasting Insulin μU/mL + Log FPG
mg/dL].
VAI was calculated as following: males VAI = {WC cm/

[39.68 + (1.88 × BMI)]} x (TG mmol/L/1.03) x (1.31/
HDL mmol/L), females VAI = {WC cm/[36.58 + (1.89 ×
BMI)]} x (TG mmol/L/0.81) x (1.52/HDL mmol/L). Cut-
off was set at 2.52 [23].

Statistical analysis
All data in the text or shown in the figures are expressed
as mean ± SE. Statistical analysis was performed using
Statistical Package for Social Science (SPSS 10 for Win-
dows Update; SPSS Inc., Chicago, Illinois, USA). The
comparisons between numerical variables were per-
formed by Student’s t-test corrected for Fisher’s exact
test. Correlation study was performed by Pearson test.
Statistical significance was set at p < 0.05.

Results
Clinical and biochemical parameters of GSD1-related
metabolic control
At study entry, height SDS was lower in both GSDIa
(−1.00 ± 0.30 vs −0.20 ± 0.14, p < 0.05) and GSDIb pa-
tients (−1.27 ± 0.50 vs 0.58 ± 0.20, p < 0.001) than in con-
trols. No significant difference was observed in the other
clinical parameters between GSDIa and GSDIb patients
and controls. In GSDIa patients serum cholesterol, TG,
lactic acid, uric acid and insulin levels were higher than
in controls. In GSDIb serum cholesterol levels were sig-
nificantly lower, lactic acid and uric acid higher than in
controls (Table 1).



Table 1 Biochemical parameters of metabolic control in GSDI patients and controls at study entry

GSDIa Controls GSDIb Controls Significance (p)

Mean SE Mean SE Mean SE Mean SE Ia vs C Ib vs C Ia vs Ib

Glucose (mg/dL) 92.80 17.79 85.70 5.92 106.71 27.43 91.57 10.58 0.11 0.08 0.22

Cholesterol (mg/dL) 191.40 35.30 149.00 23.00 104.60 15.02 139.00 32.30 0.001 0.02 0.001

Triglycerides (mg/dL) 379.10 176.10 88.20 35.30 116.40 74.69 108.00 38.30 0.001 0.73 0.001

Lactic acid (mg/dL) 2.16 0.47 1.33 0.22 3.26 1.78 1.35 0.22 0.001 0.001 0.08

Uric acid (mg/dL) 5.10 0.94 3.82 1.25 6.17 1.49 3.79 0.88 0.01 0.001 0.09

Bicarbonate (mEq/L) 22.40 2.24 26.31 1.91 24.60 13.00 24.57 1.79 0.001 0.98 0.60

Insulin (μU/L) 29.70 21.60 8.47 3.69 14.69 13.11 8.46 2.03 0.001 0.09 0.12
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At the end of the study GSDIa patients showed higher
BMI (25.94 ± 1.10 vs 22.49 ± 1.06, p < 0.05) and WC
(95.08 ± 2.99 vs 77.90 ± 0.75, p < 0.001) than controls. In
GSDIa patients serum cholesterol, TG, lactic acid, uric
acid and insulin serum levels were higher than in con-
trols. In GSD1b patients, lactic acid and uric acid were
significantly higher than in controls, serum TG and
cholesterol were lower than GSD1a (Table 2).

Metabolic syndrome and Insulin Resistance assessment
At study entry 2/10 (20 %) GSDIa and 0/7 (0 %) GSDIb
patients had MS. The remaining 8/10 (80 %) GSDIa
patients showed 2 criteria for MS. Among GSDIb pa-
tients, 3/7 (43 %) showed 2 criteria, 1/7 (14 %) showed
1 criterion, 3/7 (43 %) did not show any criteria. Consider-
ing HOMA-IR, among GSDIa patients, 8/10 (80 %) were
IR and 2/10 (20 %) were non-IR; in GSDIb patients 2/7
(29 %) were IR and 5/7 (71 %) were non-IR. HOMA-IR
values were higher in GSDIa patients than controls (7.36 ±
2.13 vs 1.90 ± 0.13, p < 0.001) and GSDIb patients (7.36 ±
2.13 vs 1.97 ± 0.40, p < 0.05). No significant difference
in HOMA-IR was observed between GSDIb patients
and controls. Baseline ISI values were significantly
lower in GSDIa than in controls (6.21 ± 0.44 vs 16.76 ±
1.85, p < 0.001). No significant difference was detected
between GSDIb patients and controls (12.86 ± 4.41 vs
13.74 ± 0.92, p = 0.79). QUICKI value was significantly
lower in GSDIa than in controls (0.30 ± 0.003 vs 0.36 ±
Table 2 Biochemical parameters of metabolic control in GSDI patien

GSDIa GSDIb

Mean SE Mean SE

Glucose (mg/dL) 84.43 4.50 88.60 8.00

Cholesterol (mg/dL) 253.89 7.76 130.2 16.43

Triglycerides (mg/dL) 481.20 39.19 135.00 53.90

Lactic acid (mg/dL) 5.11 0.38 4.52 1.22

Uric acid (mg/dL) 4.79 0.12 6.10 1.10

Bicarbonate (mEq/L) 22.14 0.17 23.74 1.41

Insulin (μU/L) 19.40 2.67 9.28 0.58
0.006, p < 0.001) (Fig. 1). No significant difference was
detected between GSDIb patients and controls (0.33 ±
0.01 vs 0.35 ± 0.003, p = 0.20). VAI data were available
only for 3 GSDIa patients (in 2/3 VAI was >2.52) and 3
GSDIb (in 2/3 VAI was >2.52). During the 10-year
follow-up 6/10 GSD1a (5 female, 1 male) patients
showed increased serum insulin levels in particular
during puberty and adulthood. Conversely only 2/7
GSDIb showed increased insulin serum levels (1 male,
1 female). Fig. 2 shows mean value of serum insulin
levels, HOMA-IR, ISI and QUICKI during the follow-
up. The Fig. 2 shows increased insulin serum levels and
HOMA-IR especially in GSDIa. Conversely in GSDIb
patients, high QUICKI and ISI were recorded during
follow-up.
At the end of the study all the enrolled patients were

adult. Among them, 7/10 (70 %) GSDIa and 0/7 (0 %)
GSDIb patients had MS. The remaining 3/10 (30 %)
GSDIa patients showed 2 criteria for MS. Among GSDIb
patients, 2/6 (33 %) showed 2 criteria, 4/6 (66 %) showed
1 criterion.
Considering HOMA-IR in GSDIa patients, 6/10 (60 %)

were IR and 4/10 (40 %) were non-IR; in GSDIb patients
2/6 (33 %) were IR and 4/6 (66 %) were non-IR.
HOMA-IR value was higher in GSD1a patients than in
controls (4.75 ± 1.80 vs 1.11 ± 0.10, p < 0.01). No significant
difference in HOMA-IR was observed between GSDIb
patients and controls.
ts and controls at the end of the study

Controls Significance (p)

Mean SE Ia vs C Ib vs C Ia vs Ib

90.37 1.02 0.22 0.46 0.65

139.75 4.38 0.001 0.45 0.006

99.40 8.52 0.001 0.16 0.01

1.33 0.05 0.001 0.001 0.78

3.54 0.24 0.007 0.001 0.18

24.22 0.48 0.01 0.67 0.23

5.02 0.39 0.04 0.14 0.47



Fig. 1 Mean value of insulin serum levels, HOMA-IR, QUICKI and baseline ISI levels in GSDIa patients (Black rectangle), GSDIa-matched controls
(Black/gray rectangle), GSDIb patients (Gray) and GSDIb-matched controls (dark gray/gray rectangle)
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Baseline ISI values were significantly higher in GSDIb
than in controls (54.90 ± 7.00 vs 24.33 ± 1.97, p < 0.005)
and GSDIa (18.41 ± 0.37, p < 0.05).
QUICKI values were lower in GSDIa patients than in

controls (0.33 ± 0.008 vs 0.37 ± 0.005, p < 0.05) (Fig. 3).
VAI value was significantly higher in both GSDIa

(8.67 ± 0.48, vs 1.63 ± 0.16, p < 0.001) and GSDIb patients
(3.76 ± 1.12 vs 1.63 ± 0.16, p < 0.005) than in controls.

Correlation study
In GSD1a patients HOMA data inversely correlated
with both QUICKI (r = −0.69, p < 0.001) and ISI results
(r = −0.45, p < 0.05); QUICKI also correlated with ISI
data (r = 0.94, p < 0.0001).
In GSD1b patients HOMA data inversely correlated

with both QUICKI (r = −0.76, p < 0.005) and ISI results
(r = −0.68, p < 0.01); QUICKI also correlated with ISI
data (r = 0.97, p < 0.0001).

Discussion
GSDI is a rare and genetically heterogeneous inborn
error of metabolism. Two forms of the disease have been
identified: GSDIa, caused by mutations of the G6PC
gene, encoding glucose-6-phosphatase expressed in liver,
kidney and bowel, and GSDIb, caused by mutations of
the SLC37A4 gene, encoding glucose-6-phosphate trans-
locase ubiquitously expressed.
Both genetic defects result in the block of the final

steps of gluconeogenesis and glycogenolysis, reducing
the release of glucose from glycogen in response to fasting,
and causing glycogen accumulation in the liver and in the
kidney. The clinical manifestations of the metabolic de-
rangement are hepato/nephromegaly and reduced tolerance
to fasting, associated with hypoglycemia, lactic acidosis,
hypertriglyceridemia, hyperuricemia. In addition to the clin-
ical features of GSDIa, most GSDIb patients have neutro-
penia and neutrophil dysfunction that predispose to severe
infections and to inflammatory bowel disease (IBD).
The treatment of GSDI is aimed at maintaining normo-

glycemia and consists of dietary regimens based on
frequent meals, cornstarch supplementation and/or noc-
turnal gastric drip feeding [24]. Diet is highly effective in
correcting the metabolic derangement of the disease.
With the use of dietary treatment, life expectancy

improved. However, a number of systemic complications,
such as hepatic adenomas, renal failure and osteoporosis



Fig. 2 Mean value of insulin serum levels, HOMA-IR, QUICKI and baseline ISI levels in GSDIa patients (Black square) and GSDIb patients (Gray diamond)
during the 10-year follow-up
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impact heavily on patients’ prognosis and quality of
life [25].
G6Pase system catalyzes the hydrolysis of G6P to glu-

cose and inorganic phosphate [12]. It has been previously
shown that G6P availability directly modulates 11βHSD1
activity [17]. The accumulation of G6P in ER fuels the
G6PT-H6PDH-11βHSD1 system, leading to increased
prereceptorial activation of glucocorticoids [26, 27]. The
effect of glucocorticoids on insulin sensitivity and their
role in the pathophysiology of IR and MS are clearly
known [28], suggesting a possible link between 11βHSD1
activity, IR and MS.
We speculated that in GSDIa patients, G6P excess in

liver ER (due to G6Pase deficiency) would increase
11βHSD1 activity causing IR and MS. Conversely in
GSDIb patients, with low ER G6P levels that would re-
duce 11βHSD1 activity, an increased insulin sensitivity
was expected.
In the present study we analyzed the presence of MS

criteria, visceral adiposity, and IR in 10 GSDIa and 7
GSDIb patients. We found that GSDIa patients showed
an increased prevalence of MS. Indeed it cannot be ex-
cluded that obesity as well as hyper-triglyceridemia
detected in GSDIa are due to the inborn error of me-
tabolism. Moreover one of the criterion for MS is
hyperglycemia that would be never present in GSDI
patients. Probably these criterion for the diagnosis of
MS cannot be used for GSDI patients.
Indeed, since G6Pase, mutated in GSDIa patients is

expressed only in liver, bowel and kidney, we hypothe-
sized the presence of IR without obesity as is the case of
mouse model with selective liver 11β-HSD1 overexpression,
showing insulin resistance, dyslipidemia, and hypertension,
but unaltered adiposity. These mice show fat accumulation
in the liver, mainly as TG. The association of IR and fatty
liver irrespective of obesity has been proposed as an early
indicator of primary hepatic IR preceding more widespread
IR and the full MS. Both lipogenesis and lipid oxidation are
activated in these mice with an apparent net accumulation
of lipid in liver and serum (4).
In GSDIa patients we demonstrated the presence of

high serum insulin levels, high HOMA-IR, as well as
low QUICKI and baseline ISI both at the first evaluation
or during the entire 10-year follow-up. To overcome the
bias due to patients’ short fasting time, at the end of the
study, the adult control subjects were asked to have



Fig. 3 Mean value of insulin serum levels, HOMA-IR, QUICKI and baseline ISI levels in GSDIa patients (Black rectangle), GSDIb patients (Gray rectangle)
and controls (Light gray rectangle) at the end of the study
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blood sampling after the same fasting time of his/her
age and sex matched patient. Also, at the end of the
study GSDIa patients showed higher serum insulin levels
and HOMA-IR and lower QUICKI and ISI than controls
demonstrating IR. Indeed GSD1a patients also showed
serum TG significantly higher than both controls and
GSD1b. This data might confirm a role of the modula-
tion of 11β-HSD1 activity by G6P in GSD1a patients.
Several studies showed that inhibition of 11βHSD1 re-

duces glucose intolerance, IR and plasma TG levels in
preclinical models of MS [6, 7]. On the basis of these
data we hypothesized that GSD1b patients are “protected”
from IR and MS.
Indeed GSDIb patients did not show a high prevalence

of MS; at the end of the study no patient showed MS. At
study entry no significant difference in HOMA-IR, baseline
ISI and QUICKI was observed between GSDIb patients
and controls. During the 10-year follow-up 6/10 GSDIa
patients showed increased serum insulin, conversely
only 2/7 GSDIb showed increased insulin serum levels.
In adult GSDIb patients, baseline ISI was significantly
higher than in both controls and GSDIa suggesting low
IR. In addition, pharmacological inhibition of 11βHSD1
has been associated to beneficial effects on weight, gly-
cemic control and lipid profile in humans [8, 9]. The
interference with 11β HSD1 activity might also explain
the absence, in GSD1b patients, of hypertriglyceridemia
which is part of the biochemical features of the inborn
error of metabolism, namely GSD.
VAI data resulted significantly higher in both groups

of patients than in controls. The presence of obesity and
high serum TG levels is part of the clinical and bio-
chemical features of the GSDI. A role of the dietary
treatment, including frequent meal, continuous enteral
feeding and/or corn starch cannot be excluded. However
it is noteworthy that in GSDIb patients, BMI was similar
to control subject and that hypertriglyceridemia was ex-
clusively present in GSDIa patients.
The results of the present study showing increased IR

in GSDIa patients and increased insulin sensitivity in
GSDIb patients suggest a role of the interaction between
G6P and 11βHSD1.

Conclusion
In conclusion, we demonstrated that GSDIa patients have
IR and are at risk for developing MS. These results shed
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new light on so far unrecognized complications, such as
IR and MS and have obvious clinical implications, suggest-
ing a routine metabolic assessment in the management of
GSDIa patients.
In addition, we emphasize the differences between

GSDIa and GSDIb, contributing once more to consider
and to treat them as different entities.
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