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Inherited cobalamin malabsorption. Mutations in
three genes reveal functional and ethnic patterns
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Abstract

Background: Inherited malabsorption of cobalamin (Cbl) causes hematological and neurological abnormalities that
can be fatal. Three genes have been implicated in Cbl malabsorption; yet, only about 10% of ~400-500 reported
cases have been molecularly studied to date. Recessive mutations in CUBN or AMN cause Imerslund-Gräsbeck
Syndrome (IGS), while recessive mutations in GIF cause Intrinsic Factor Deficiency (IFD). IGS and IFD differ in that IGS
usually presents with proteinuria, which is not observed in IFD. The genetic heterogeneity and numerous
differential diagnoses make clinical assessment difficult.

Methods: We present a large genetic screening study of 154 families or patients with suspected hereditary Cbl
malabsorption. Patients and their families have been accrued over a period spanning >12 years. Systematic genetic
testing of the three genes CUBN, AMN, and GIF was accomplished using a combination of single strand
conformation polymorphism and DNA and RNA sequencing. In addition, six genes that were contenders for a role
in inherited Cbl malabsorption were studied in a subset of these patients.

Results: Our results revealed population-specific mutations, mutational hotspots, and functionally distinct regions in
the three causal genes. We identified mutations in 126/154 unrelated cases (82%). Fifty-three of 126 cases (42%)
were mutated in CUBN, 45/126 (36%) were mutated in AMN, and 28/126 (22%) had mutations in GIF. We found 26
undescribed mutations in CUBN, 19 in AMN, and 7 in GIF for a total of 52 novel defects described herein. We
excluded six other candidate genes as culprits and concluded that additional genes might be involved.

Conclusions: Cbl malabsorption is found worldwide and genetically complex. However, our results indicate that
population-specific founder mutations are quite common. Consequently, targeted genetic testing has become
feasible if ethnic ancestry is considered. These results will facilitate clinical and molecular genetic testing of Cbl
malabsorption. Early diagnosis improves the lifelong care required by these patients and prevents potential
neurological long-term complications. This study provides the first comprehensive overview of the genetics that
underlies the inherited Cbl malabsorption phenotype.
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Ancestry, Genetic testing, Founder mutation, Genetic heterogeneity
Background
The metabolic pathway of vitamin B12 (Cobalamin, Cbl)
was elucidated by studying rare disorders in children
[1,2]. Deficiency of vitamin B12 (Cobalamin, Cbl) in
childhood is usually caused by chronic malnutrition,
parasitic infections, or genetic defects. With the advent
of modern agriculture and medicine, the first two causes
have largely disappeared, although they may persist in
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reproduction in any medium, provided the or
less developed regions of the world or among individuals
who practice unbalanced dietary habits [3]. Genetic
defects in Cbl absorption, serum transport, and intra-
cellular metabolism are found worldwide [1,4,5]. Clinical
symptoms may be present at birth for intracellular defects
(complementation groups cblA OMIM251100; cblB
OMIM251110; cblC OMIM277400; cblD OMIM277410;
cblE OMIM236270; cblF OMIM277380; cblG OMIM
250940) and transcobalamin 2 deficiency (OMIM275350).
However, in the case of intestinal Cbl malabsorption,
obvious signs emerge usually only after several months or
even years, when the fetal supply stored in the liver has
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been exhausted [6], and some adolescent cases have
been noted [7,8]. The signs of Cbl malabsorption are
general weakness, slow growth, developmental delays
and learning difficulties, dementia, psychological pro-
blems, neurodegeneration of the spinal cord, increased
rate of infections due to neutropenia, thrombocytopenia,
and megaloblastic anemia with lethal consequences if
not treated [9]. Clinical diagnostic markers include low
serum Cbl, elevated homocysteine and methylmalonic
acid in serum or urine, and exclusion of antibodies
against parietal cells and gastric intrinsic factor (IF),
whose presence would indicate pernicious anemia. But
none of these tests is specific for Cbl malabsorption
[10]. The Schilling test [11], measuring the absorption of
radio-labeled Cbl, was prematurely retired without an
adequate replacement [12]. Ultimately, the final diagno-
sis is reached by exclusion of many differential diagnoses
and can only be confirmed by genetic testing. On the
other hand, treatment is often administered via paren-
teral Cbl supplementation without confirming the diag-
nosis [9].
The knowledge of the genetic basis of hereditary Cbl

malabsorption has much improved over the past decade,
with three genes now implicated in its etiology. In 1999,
the gene CUBN encoding cubilin was found mutated in
a series of Finnish patients with selective malabsorption
of Cbl and proteinuria [13], followed by the gene AMN
that encodes amnionless, which was found mutated in
several Norwegian and Jewish patients [14,15]. Recessive
mutations in either of these two genes cause the disease
known as Imerslund-Gräsbeck syndrome (IGS, megalo-
blastic anemia 1; OMIM261100) or selective vitamin B12

malabsorption with proteinuria [16-19]. Cubilin and
amnionless form the cubam dimer, which functions as
the ileal receptor for the gastric intrinsic factor and Cbl
complex (IF-B12) that is responsible for uptake of the es-
sential food-born vitamin [20,21]. A clinically similar
disease without proteinuria is gastric intrinsic factor de-
ficiency (IFD, OMIM261000 [22]) due to recessive muta-
tions in GIF [23-25]. The two-stage Schilling test [11]
distinguishes IGS from IFD by the addition of IF in the
second assay step, which corrects the malabsorption of
Cbl in IFD but not in IGS. However, this test is rarely
used today [12] and for clinical purposes the differenti-
ation is usually not possible.
With the implication of these three genes, the majority

of IGS and IFD can be reliably diagnosed by genetic test-
ing. However, the diagnostic work is daunting given the
genetic heterogeneity and therefore many differential
diagnoses have to be excluded before one embarks on
genetic testing. In addition, the size of CUBN, which
consists of 67 exons, and AMN, which has proved diffi-
cult to analyze, complicate the task. Not surprisingly, of
about 400–500 patients reported since 1960, only some
10% were genetically tested and many reports include
only a few patients [8,26-36]. This situation has resulted
in an incomplete genetic picture of intestinal Cbl malab-
sorption and hampers not only patient care but future
research as well.
We present the results of systematic genetic testing in

hereditary intestinal Cbl malabsorption among 154 con-
secutively recruited sibships or patients. We report 52
previously undescribed mutations in CUBN, AMN, and
GIF and discuss the mutational spectrum in various
regions of the world, the genetic testing strategy, func-
tional consequences, and suggest that not all responsible
genes have been identified yet.

Subjects and methods
Patients
We studied patients from all over the world. Both par-
ents were available for study in 90 cases, one parent each
in 15 cases, and none in 49 cases (Table 1 and Add-
itional file 1). The diagnosis of hereditary deficiency of
vitamin B12 absorption was made based on established
criteria [6,16,19], usually but not always in tertiary level
hospitals. Patients were typically in the range of 6 months
to 5 years of age when first diagnosed with Cbl defi-
ciency, however, several patients were over 5 years old
before they displayed chronic health problems. Clinical
and laboratory details on work-up, exclusion of differen-
tial diagnoses, symptom management, and therapy var-
ied widely according to country and treatment center.
Low serum Cbl (<200 pg/ml) was the most commonly
used marker of Cbl deficiency, sometimes combined
with proteinuria, after exclusion of intestinal parasites
and nutritional deficiencies. Only very few cases ever
had a Schilling test (Additional file 1).

Patient samples
Blood samples for DNA or RNA isolation were obtained
after informed consent with prior Institutional Review
Board approval (OSU protocol 2005 H0201) according
to the Declaration of Helsinki. DNA isolation was per-
formed by standard proteinase K digest, phenol-
chloroform extraction and EtOH precipitation at the
Ohio State University or locally using commercially
available DNA isolation kits from various companies.
Total RNA was isolated using the Trizol protocol
according to the manufacturer’s instructions (Invitrogen,
Carlsbad, CA).

Mutation screening and genetic analyses
We amplified individual exons of CUBN (GenBank
RefSeq: NM001081.2), AMN (GenBank RefSeq:
NM030943.1), and GIF (GenBank accession NM005142.2)
from genomic DNA by PCR and analyzed the PCR ampli-
cons by single strand conformation polymorphism (SSCP,



Table 1 Genetic study results of 154 patients/families with suspected Cbl malabsorption

Identifier a DNA mutation b Genotype c predicted consequence
mRNA or protein level d

Interpretation

DT CUBN c.250C>T hom p.Gln84* IGS

MGA47 CUBN c.252+1G>A & del ~90 kb proximal of
5'-end to Intron 28

hom splice site mutation & partial
gene deletion

IGS

Fam SA CUBN c.434G>A hom p.Gly145Gln IGS

ZX-1 CUBN c.434G>A hom p.Gly145Gln IGS

MGA57 CUBN c.489G>A & c.1530G>A comp het c.489_490ins137bp; p.Gly164fs
& Exon 13 skipping; p.Val473fs

IGS

Norge 1 CUBN c.673T>A hom p.Cys225Ser IGS

MGA53 CUBN c.889C>T & c.1010C>T comp het p.Gln297* & p.Pro337Leu IGS

MGA1 CUBN c.1010C>T & c.2673C>A comp het p.Pro337Leu & p.Cys891* IGS

MGA20 CUBN c.1010C>T & del >150 kb proximal of
5'-end to ~150 kb distal of 3'-end

comp het p.Pro337Leu & complete
gene deletion

IGS

MGA29 CUBN c.1436C>G & del >150 kb proximal of
5'-end to >160 kb distal of 3'-end

comp het p.Leu479* & complete deletion IGS

HS98 CUBN c.1526delG & c.1865delC comp het p.Gly509fs & p.Thr621fs IGS

MGA34 CUBN c.1838delG & c.3890C>T comp het p.Gly613fs & p.Pro1297Leu IGS

KT CUBN c.1951C>T hom p.Arg651* IGS

Taiwan 1 CUBN c.1951C>G & ? comp het p.Arg651Gly (rs182512508) & ? IGS

MGA11 CUBN c.2068A>G & c.3330-439C>G comp het p.Ile690Val & aberrant splicing IGS

MGA66 CUBN c.2486C>T & ? comp het p.Ser829Leu & ? IGS

MGA76 CUBN c.2511_2529del19bp & c.4168G>A comp het p.Pro837fs & p.Gly1390Ser IGS

MGA3 CUBN c.2594G>A hom p.Ser865Asn IGS

MGA43 CUBN c.2594G>A & ? comp het p.Ser865Asn & ? IGS

MT2 CUBN c.2594G>A & c.3749C>T comp het p.Ser865Asn & p.Ser1250Phe IGS

4655-2590 CUBN c.2614_2615delGA hom p.Asp872fs IGS

MGA78 CUBN c.2614_2615delGA hom p.Asp872fs IGS

MGA56 CUBN c.2949C>A hom p.Tyr983* IGS

MGA14 CUBN c.3056C>G hom p.Ser1019* IGS

MGA26 CUBN c.3096delT & ? comp het p.Thr1032* & ? IGS

MGA7 CUBN c.3300-439C>G hom aberrant splicing IGS

RL02 CUBN c.3577T>G hom p.Trp1193Gly IGS

FM1(20 cases) CUBN c.3890C>T hom p.Pro1297Leu IGS

AT01 CUBN c.3890C>T hom p.Pro1297Leu IGS

MGA17 CUBN c.3890C>T hom p.Pro1297Leu IGS

MGA72 CUBN c.3890C>T hom p.Pro1297Leu IGS

MGA65 CUBN c.3999C>A & ? comp het p.Cys1333* & ? IGS

KA95 CUBN c.4115C>G hom p.Thr1372Arg IGS

MGA2 CUBN c.4115C>G hom p.Thr1372Arg IGS

Fam A AMN c.14delG hom p.Gly5fs IGS

Fam C AMN c.14delG hom p.Gly5fs IGS

Fam D AMN c.14delG hom p.Gly5fs IGS

Norge 2 AMN c.14delG hom p.Gly5fs IGS

MGA12 AMN c.43+1G>T & c.701G>T comp het splice site mutation
& p.Cys234Phe

IGS

MGA88 AMN c.43+4A>G & c.100delG comp het splice site mutation
& p.Ala34fs

IGS

MGA5 AMN c.44-3C>G hom splice site mutation IGS

Fam K AMN c.122C>T hom p.Thr41Ile IGS
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Table 1 Genetic study results of 154 patients/families with suspected Cbl malabsorption (Continued)

MGA51 AMN c.122C>T & c.1118_1119insCGCT comp het p.Thr41Ile & p.Leu374fs IGS

MGA77 AMN c.176T>C hom p.Leu59Pro IGS

FT AMN c.208-1G>C hom splice site mutation IGS

Fam M AMN c.208-2A>G hom Exon 4 skipping IGS

CT AMN c.208-2A>G hom Exon 4 skipping IGS

ET AMN c.208-2A>G hom Exon 4 skipping IGS

MT AMN c.208-2A>G hom Exon 4 skipping IGS

Jor 8.7 AMN c.208-2A>G hom Exon 4 skipping IGS

Jor 7.7 AMN c.208-2A>G hom Exon 4 skipping IGS

Fam C89 AMN c.208-2A>G hom Exon 4 skipping IGS

Israel I AMN c.208-2A>G hom Exon 4 skipping IGS

Israel II AMN c.208-2A>G hom Exon 4 skipping IGS

MGA30 AMN c.208-2A>G hom Exon 4 skipping IGS

MGA45 AMN c.208-2A>G hom Exon 4 skipping IGS

MGA52 AMN c.208-2A>G hom Exon 4 skipping IGS

MGA58 AMN c.208-2A>G hom Exon 4 skipping IGS

MGA59 AMN c.208-2A>G hom Exon 4 skipping IGS

MGA69 AMN c.208-2A>G hom Exon 4 skipping IGS

MGA75 AMN c.208-2A>G hom Exon 4 skipping IGS

MGA22 AMN c.295delG hom p.Gly98fs IGS

MGA37 AMN c.468_469insT & c.1006+34_48del15bp comp het p.Gly157fs & Exon 9 skipping IGS

BT AMN c.514-34G>A hom new splice site leading to
c.513_514ins32bp; p.Thr172fs

IGS

MGA83 AMN c.663G>A hom p.Trp221* IGS

Fam AK AMN c.683_730del48bp hom p.Gln228_Leu243del IGS

PT AMN c.761G>A hom p.Gly254Glu IGS

MGA19 AMN c.967_(1169+15)del296bp &
c.977_978insCCCG

comp het partial gene deletion & p.Arg326fs IGS

MGA86 AMN c.1006+16_30del15bp hom unknown IGS

Sudan 1 AMN c.1006+34_48del15bp hom Exon 9 skipping IGS

MGA8 AMN c.1006+34_48del15bp hom Exon 9 skipping IGS

MGA82 AMN c.1006+34_48del15bp hom Exon 9 skipping IGS

MGA13 AMN c.1006+34_48del15bp & c.1314_1315delCA comp het Exon 9 skipping & p.His438fs IGS

Belgium 1 AMN c.1006+36_50del15bp & c.1253_1254insA comp het unknown & p.Leu419fs IGS

MGA38 AMN c.1014_1021delCCTCGGCG hom p.Leu339fs IGS

MGA73 AMN c.1014_1021delCCTCGGCG hom p.Leu339fs IGS

MGA81 AMN c.1170-6C>T & ? comp het splice site mutation? & ? IGS?

MGA74 AMN c.1257+10C>T hom splicing defect? IGS

MGA68 AMN c.1314_1315delCA hom p.His438fs IGS

France 1 GIF c.79+1G>A hom splice site mutation IFD

MGA4 GIF c.79+1G>A hom splice site mutation IFD

MGA25 GIF c.79+1G>A hom splice site mutation IFD

MGA49 GIF c.79+1G>A & del Intron 8 to distal of 3'-end comp het splice site mutation & partial
gene deletion

IFD

MGA79 GIF c.79+1G>A & c.137C>T comp het splice site mutation & p.Ser46Leu IFD

MGA67 GIF c.79+1G>A & c.290T>C comp het splice site mutation & p.Met97Thr IFD

MGA64 GIF c.79+1G>A & c.673A>C comp het splice site mutation & p.Ser225Arg IFD

Kuwait 1 GIF c.80-1G>A hom splice site mutation IFD

Kuwait 2 GIF c.80-1G>A hom splice site mutation IFD
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Table 1 Genetic study results of 154 patients/families with suspected Cbl malabsorption (Continued)

IT GIF c.137C>T hom p.Ser46Leu IFD

NT GIF c.137C>T hom p.Ser46Leu IFD

LT GIF c.161delA hom p.Asn54fs IFD

Fam 8 GIF c.183_186delGAAT hom p.Met61fs IFD

MGA33 GIF c.183_186delGAAT hom p.Met61fs IFD

MGA55 GIF c.183_186delGAAT hom p.Met61fs IFD

MGA39 GIF c.183_186delGAAT & c.659T>C comp het p.Met61fs & p.Ile220Thr IFD

MGA27 GIF c.256+2T>G & c.659T>C comp het splice site mutation & p.Ile220Thr IFD

MGA35 GIF c.290T>C & ? comp het p.Met97Thr & ? IFD

MGA54 GIF c.431_438delAGAAGAAC & c.974_975insG comp het p.Gln144fs & p.Val325fs IFD

MGA48 GIF c.469T>C & ? comp het? p.Phe157Leu & ? IFD?

HT GIF c.685G>A hom p.Ala229Thr IFD

MGA36 GIF c.685G>A hom p.Ala229Thr IFD

D2914 GIF c.938C>T & ? comp het p.Thr313Ile & ? IFD

MGA24 GIF c.1073+5G>A hom splice site mutation IFD

MGA63 GIF c.1073+5G>A hom splice site mutation IFD

MGA92 GIF c.1073+5G>A hom splice site mutation IFD

AT GIF c.1175_1176insT hom p.Thr393fs IFD

MGA61 GIF c.1222G>A hom p.Glu408Lys IFD

MGA9 LMBRD1 c.404delC & c.1056delG comp het p.Thr135fs & p.Leu352fs cblF defect

JCA1 AMN/CUBN excluded;
GIF/FUT2/CD320/ABCC1/LMBRD1 screened

n/a n/a differential diagnosis?

MGA6 AMN/CUBN/GIF/FUT2/CD320/ABCC1/LMBRD1/TCN2
screened

n/a n/a differential diagnosis?

MGA10 AMN/CUBN/GIF/FUT2/CD320/ABCC1/LMBRD1 screened n/a n/a differential diagnosis?

MGA15 AMN/CUBN/GIF/FUT2/CD320/ABCC1/LMBRD1 screened n/a n/a differential diagnosis?

MGA16 AMN/CUBN/GIF/FUT2/CD320/ABCC1/LMBRD1 screened n/a n/a differential diagnosis?

MGA18 AMN/CUBN/GIF/FUT2/CD320/ABCC1/LMBRD1 screened n/a n/a differential diagnosis?

MGA21 AMN/CUBN/GIF/FUT2/CD320/ABCC1/LMBRD1 screened n/a n/a differential diagnosis?

MGA23 AMN/CUBN/GIF/FUT2/CD320/ABCC1/LMBRD1/TCN2
screened

n/a n/a differential diagnosis?

MGA28 AMN/CUBN/GIF/FUT2/CD320/ABCC1/LMBRD1 screened n/a n/a differential diagnosis?

MGA31 AMN/CUBN/GIF/FUT2/CD320/ABCC1/LMBRD1 screened n/a n/a differential diagnosis?

MGA32 AMN/CUBN/GIF/FUT2/CD320/ABCC1/LMBRD1 screened n/a n/a differential diagnosis?

MGA40 AMN/CUBN/GIF excluded;
FUT2/CD320/ABCC1/LMBRD1 screened

n/a n/a differential diagnosis?

MGA41 AMN/CUBN/GIF excluded;
FUT2/CD320/ABCC1/LMBRD1 screened

n/a n/a differential diagnosis?

MGA42 AMN/CUBN/GIF screened n/a n/a differential diagnosis?

MGA44 AMN/CUBN/GIF/ABCC1/LMBRD1 screened n/a n/a differential diagnosis?

MGA46 CUBN/GIF excluded;
AMN/FUT2/CD320/ABCC1/LMBRD1 screened

n/a n/a differential diagnosis?

MGA50 AMN/CUBN/GIF screened n/a n/a differential diagnosis?

MGA62 AMN/CUBN/GIF/FUT2/CD320/ABCC1/LMBRD1/TCN1/TCN2 screened n/a n/a TCN1 defect?

MGA70 AMN/CUBN/GIF/ABCC1/LMBRD1 screened n/a n/a differential diagnosis?

MGA71 AMN/CUBN/GIF screened n/a n/a differential diagnosis?

MGA80 AMN/CUBN/GIF/ABCC1/LMBRD1 screened n/a n/a differential diagnosis?

MGA84 AMN/CUBN/GIF screened n/a n/a differential diagnosis?

MGA85 AMN excluded; CUBN/GIF screened n/a n/a differential diagnosis?

MGA87 AMN/CUBN/GIF screened n/a n/a differential diagnosis?
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Table 1 Genetic study results of 154 patients/families with suspected Cbl malabsorption (Continued)

MGA89 GIF excluded; AMN/CUBN screened n/a n/a differential diagnosis?

MGA90 AMN/CUBN excluded; GIF screened n/a n/a differential diagnosis?

MGA91 TCN1 c.747+3A>C & ?; GIF screened comp het? splice site mutation? TCN1 defect?
aCases are ordered by the location of the mutations in the three genes CUBN, AMN, and GIF, followed by potential differential diagnoses by case code. Additional
file 1 online contains a sortable Excel table with additional information.
bNumbering relative to adenine in the first ATG start codon of CUBN (GenBank RefSeq: NM001081.2), AMN (GenBank RefSeq: NM030943.1), and GIF (GenBank
accession NM005142.2).
chom means homozygous, comp het means compound heterozygous, n/a means not applicable.
dNumbering relative to the first methionine deduced from the cDNA sequences. Mutations which seemingly caused a frameshift were described as to where the
frameshift occurred rather than when the next stop codon was predicted. Where available experimentally confirmed splicing defects on the mRNA level are listed
(for details see text).
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[37]) and direct DNA sequencing. Sequencing was per-
formed on an ABI PRISMW 3730 DNA analyzer (Applied
Biosystems, Foster City, CA). PCR and SSCP conditions
and primer sequences are available under a collaborative
agreement. All nucleotide numbering is relative to the ad-
enine in the first ATG start codon of the three genes,
while the amino acid residue numbering is relative to the
first methionine deduced from these cDNA sequences
according to standard mutation nomenclature [38]. All
exons were sequenced in at least 100 anonymized controls
from various ethnic backgrounds (89% Caucasian, 10%
African-American, 1% other; [39]. Missense changes
were studied for conservation using HomoloGene (Add-
itional file 2) and the PolyPhen-2 program [40]. The
genes TCN1, TCN2, FUT2, CD320, LMBRD1, and
ABCC1 were screened by DNA sequencing in a selected
group of patients (Additional file 1).

Transcript analysis
Suspected splice site changes were studied by comparing
them to consensus sequences in spliceDB [41]. If RNA
was available, first-strand cDNA was produced from 0.5-
1 μg total RNA using the AMV cDNA Synthesis Kit
(Roche Applied Science, Indianapolis, IN) according to
the instructions with a poly dT24-primer. Subsequent
reverse-transcription-PCR was performed with assorted
cDNA primers covering the desired regions within
CUBN (GenBank RefSeq: NM001081.2), AMN (Gen-
Bank RefSeq: NM030943.1), or GIF (GenBank accession
NM005142.2). DNA sequencing was performed as
above.

Results
Nature and frequency of the mutations
We have identified mutations in 126 of 154 (82%) cases
or families that were ostensibly unrelated (Table 1 and
Figure 1; Additional files 1 & 2). Of these 126 cases, 53
(42%) were mutated in CUBN, 45 (36%) were mutated in
AMN, and 28 (22%) had mutations in GIF. We analyzed
both parents in 75 cases and one parent in eight cases
and positive carrier status in all parents was established,
excluding any de novo mutations. Parental samples were
unavailable for 43 cases. In nine cases only one mutation
was identified (see missing mutations). One case
(MGA9) was initially classified as IGS, based on a false-
positive Schilling test, but later turned out to be mutated
in the gene LMBRD1 coding for a lysosomal Cbl ex-
porter (cblF defect; patient 9 in [42]). Twenty-seven
cases (18%) remain unresolved and sequencing of
TCN1, TCN2, FUT2, CD320, LMBRD1, and ABCC1
in selected cases identified no additional mutations
(Additional file 1).
Several intronic and suspected silent changes

caused splicing defects (AMN c.514-34G>A and c.1006
+34_48del15bp; CUBN c.489G>A and c.1530G>A) and
thus predictions of mRNA processing based on se-
quence changes might deviate from reality (Table 1).
Consequently, mutations which seemingly caused a
frameshift were described as to where the frameshift
occurred rather than when the next stop codon was
predicted, unless the consequences on the mRNA level
were studied.

Mutations in CUBN
We have identified 30 CUBN point mutations and three
large deletions (Table 1 and Additional file 1) in 53 cases
or families. Of these 33 different gene defects, seven
were previously reported, while 26 novel changes are
presented here.
The most common CUBN mutation was missense

change c.3890C>T; p.Pro1297Leu, a Finnish founder
mutation in exon 27 [13,43]. It occurred mostly in
homozygous state but its relatively high incidence
among the Finns (>25 families or cases) also unraveled
two other rare CUBN mutations c.1838delG; p.Gly613fs
in MGA34 and c.1230+1G>A [15].
Our results showed that several other ethnicity-

specific mutations exist in CUBN. Two Saudi Bedouin
families shared missense change c.434G>A; p.Gly145Glu
(Fam SA in [15] and ZX-1). Missense mutation
c.1010C>T; p.Pro337Leu was found three times in com-
bination with other defects in cases of German (MGA53
with p.Gln297* and MGA20 with a large deletion) and
Western European origin (case MGA1 with p.Cys891*),
suggesting that p.Pro337Leu is a Germanic mutation.
Intronic mutation c.3330-439C>G is Swedish in origin
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Figure 1 Illustration of the proteins cubilin and amnionless
mutated in IGS and intrinsic factor mutated in IFD, leading to
inherited cobalamin malabsorption. Mutations that cause IGS in
cubilin were restricted to exons 1–28 that encode the amnionless
binding domain (EGF1-8) and the IF-Cbl binding region (CUB5-8).
Two other mutations located towards the carboxy-terminal end (p.
Ser2785fs in CUB20 and p.Ile2984Val in CUB22) caused proteinuria.
Mutations in amnionless and intrinsic factor were located
throughout the protein and many mutations affect splicing (Table 1).
The mutational hotspot in AMN includes the transmembrane
domain and flanking GC-rich repetitive genomic sequences that are
apparently unstable (see text). CUB means complement C1r/C1s,
Uegf, and Bone morphogenic protein-1, EGF means epidermal
growth factor repeats, IF means intrinsic factor, CR means
cysteine-rich domain, SS means signal sequence (aa 1–19), TM
means transmembrane domain (aa 360–380), and aa means amino
acid. The proteins are not drawn to scale.
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(homozygous in patient MGA7 and case FM2 in [13];
compound in MGA 11 with p.Ile690Val). Furthermore,
Ashkenazi frameshift mutation c.2614_2615delGA
(cases 4655–2590 and MGA78) and Turkish missense
mutation c.4115C>G; p.Thr1372Arg (families KA95
and MGA2) were found twice each homozygously.
However, patients from multi-ethnic Turkey carried
several different IGS and IFD mutations (Table 1 and
Additional file 1).
Missense change c.2594G>A; p.Ser865Asn occurred in

Albania (family MGA3, homozygous), Turkey (case MT2
with p.Ser1250Phe), and in a Scottish case in whom the
second mutation is still undetected (MGA43). This is the
only IGS or IFD mutation we have encountered in one
anonymized control individual. However, p.Ser865Asn was
heterozygous in that individual, who had no other suspi-
cious changes. Missense change p.Ser865Asn was found at
low frequency in the NIH Exome Sequencing Project
(rs138083522, A-allele frequency 0.014). Ser865 is not
100% conserved among mammals and p.Ser865Asn was
considered a benign amino acid change (PolyPhen-2
score = 0.007). Thus, its functional relevance is unknown.
However, it was seen in four patients, homozygously in
two siblings of family MGA3 and once in combination
with the damaging mutation p.Ser1250Phe, which suggests
that missense p.Ser865Asn is a pathogenic IGS mutation
or at least in linkage disequilibrium with an undetected
CUBN mutation.
Of the remaining 20 CUBN mutations, 15 are clearly

deleterious: two large deletions, seven nonsense, one
splice site, and three frameshift mutations. The two
alleged silent mutations in individual MGA57 each
affected the last nucleotide in exons 5 and 13, respect-
ively. Reverse-transcription-PCR revealed that c.489G>A
(exon 5) caused retention of part of intron 5 (137 bp)
and c.1530G>A (exon 13) led to the skipping of exon 13
(113 bp), causing a frameshift in both alleles (p.Gly164fs
and p.Val473fs).
Of the 5 remaining missense changes, p.Gly1390Ser

occurred in combination with a frameshift mutation in
family MGA76. Similarly, p.Cys225Ser (patient Norge 1)
and p.Trp1193Gly (patient RL02) targeted residues that
are 100% conserved from humans to C. elegans and were
considered damaging by PolyPhen-2, supporting their
pathogenic role. The other two missense mutations
p.Arg651Gly (family Taiwan 1) and p.Ser829Leu (MGA66)
are discussed further below.

Mutations in AMN
In total we have detected 27 different AMN mutations
of which 19 were previously undescribed (Table 1 and
Additional file 1). The most frequent mutation is c.208-
2A>G, which causes an out-of-frame loss of exon 4 in
the mRNA [14]. This ancient founder mutation is about
13,600 years old [44] and causes some 15% of IGS cases
worldwide and more than 50% among Turks, Jordanians,
and Sephardim combined, many of them expatriates. It
accounted for 16 of the 45 AMN-mutated sibships in
our cohort. A second acceptor splice site mutation in in-
tron 3 (c.208-1G>C) affected the neighboring nucleotide
in family FT.
The second most common mutation is a 15-bp dele-

tion in intron 9 (c.1006+34_48del15bp) that was found
in 5 sibships, in two of them combined with other
mutations (MGA37: c.468_469insT, and MGA13:
c.1314_1315delCA). At first, we assumed that the 15-bp
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deletion was a polymorphism. However, non-Mendelian
inheritance patterns of flanking markers indicated that
in the presence of this mutation, the wildtype allele in
heterozygotes failed to amplify. After designing
deletion-specific PCR primers, we were able to show
that for example in MGA8 both parents were het-
erozygous and the patient was homozygous for c.1006
+34_48del15bp. Follow-up reverse-transcription-PCR
analysis and DNA sequencing showed that this particu-
lar deletion caused the complete loss of exon 9
(163 bp), leading to a frameshift in the resulting mRNA.
The mutation occurred in Southwestern Europe (France
and Spain) but was also found in Sudan (family Sudan
1) and in the USA (patient MGA82). The differing
flanking haplotypes in the European, American, and Su-
danese cases and the fact that two similar 15-bp
deletions occurred in patients MGA86 (homozygous
c.1006+16_30del15bp) from Yemen and Belgium 1
(compound heterozygous c.1006+36_50del15bp and
c.1253_1254insA; [15]) from Europe pointed to a muta-
tional hotspot. Four additional insertion-deletion muta-
tions in the same region accounted for four more
cases from Europe (MGA51: c.1118_1119insCGCT with
missense c.122C>T; Thr41Ile and MGA19: c.967_(1169
+15)del296bp and c.977_978insCCCG) and Central
America (MGA38 and MGA73: homozygous
c.1014_1021delCCTCGGCG). Moreover, the heterozy-
gous change c.1170-6C>T in intron 10 (patient
MGA81) and a homozygous change (c.1257+10C>T,
patient MGA74) in intron 11 might affect mRNA pro-
cessing as seen with other intronic changes in this re-
gion but RNA was not available to study them further.
The repetitive and GC-rich region extending from in-
tron 8 to intron 11 (838 bp with 75% G+C-content)
includes the transmembrane domain in exon 10 (aa
~360-380; [45]).
The remaining 12 AMN mutations were private events

in individual families or cases, with the exception of
c.1314_1315delCA, which was seen in MGA13 and
homozygously in MGA68. Case MGA12 carried a donor
splice site and a missense mutation as detailed previ-
ously [33]. Patient MGA88 was compound heterozygous
for a splice site and a frameshift mutation, while the
remaining seven sibships were homozygous for the re-
spective mutation: MGA5, MGA77, MGA22, MGA83,
Fam AK [14], PT, and BT with intronic point mutation
c.514-34G>A. This ostensibly harmless change activated
a cryptic splice site that caused the misincorporation of
32 bp in the mRNA (c.513_514ins32bp; p.Thr172fs).

Mutations in GIF
In our cohort 28/126 (22%) carried mutations in GIF. A
total of 18 different mutations were identified of which
11 were previously reported and 7 are documented here
(Table 1 and Additional file 1). The most numerous was
splice site mutation c.79+1G>A in intron 1 that was
found in seven sibships. Three times it was found homo-
zygously (France 1, MGA4, and MGA25) and four times
in combination with other defects: with a 3’-terminal de-
letion in MGA49 (see below) and with three different
missense mutations in MGA79, MGA67, and MGA64,
respectively. In patient MGA79 from Siberia it was mis-
sense mutation c.137C>T; p.Ser46Leu that was also
found in two families from Turkey (IT and NT). Muta-
tion p.Ser46Leu might be a Central Asian founder event
but we lack sufficient information to prove that. In pa-
tient MGA67, we detected missense change c.290T>C;
p.Met97Thr, which was described previously [8] and also
occurred in a case from Finland (MGA35). In MGA64,
the splice site mutation was compound heterozygous
with missense mutation c.673A>C; p.Ser225Arg. Splice site
mutation c.79+1G>A is apparently a Western Caucasian
founder mutation, as we have not observed variation
on the flanking haplotype.
Two more founder mutations were detected in GIF:

c.183_186delGAAT; p.Met61fs, which is African in
origin [23] and Chaldean splice site mutation c.1073
+5G>A [46]. While the latter was only found in homozy-
gosity, p.Met61fs once occurred in a mixed African-
Caucasian patient (MGA39) together with missense muta-
tion c.659T>C; p.Ile220Thr [23]. Residue Ile220 is con-
served among mammals and the mutation scored
damaging (PolyPhen-2 score 0.998). This missense
change was also found in a second case (MGA27)
together with a splice site mutation c.256+2 T>G [30].
Kuwaiti acceptor splice site mutation c.80-1G>A and

two private insertion-deletion mutations c.161delA
(case LT) and c.1175_1176insT (case AT) were described
previously [24] and missense change c.1222G>A;
p.Glu408Lys in case MGA61 [32] affected a conserved
residue. All these mutations were homozygous.
Families HT from Turkey and MGA36 from Lebanon

shared the missense mutation c.685G>A; p.Ala229Thr.
MGA54 carried two private frameshift mutations:
c.431_438delAGAAGAAC and c.974_975insG and may
have had a false positive Schilling test. Families MGA48
and D2914 are described below.

Large deletions in CUBN and GIF
Large gene deletions were discovered via incompatible
Mendelian inheritance patterns of sequence poly-
morphisms or microsatellite markers. All four identified
deletions were compound heterozygous with point muta-
tions found on the other allele (Table 1 and Additional
file 1). Three large deletions were detected in the CUBN
gene, two removed the complete gene (MGA20 and
MGA29), while one deletion removed the 5’-half of
the gene up to exon 28 (MGA47). In GIF, a partial
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gene deletion extended from intron 8 past the 3’-end
in the two siblings of MGA49. Because of the large
physical distances involved we were unable to identify
the exact deletion breakpoints via PCR but we have
used markers flanking the genes in order to demar-
cate the deletions.

Missing mutations
In nine cases, we have found only one likely mutation
(one in AMN; five in CUBN, and three in GIF; Table 1
and Additional file 1). Four cases had recurrent muta-
tions seen in other IGS or IFD cases or they were clearly
deleterious (MGA43, MGA26, MGA65, and MGA35).
The remaining five cases (Taiwan 1, MGA66, MGA81,
MGA48, and D2914) carried heterozygous changes that
were not encountered among controls or dbSNP with
the exception of CUBN c.1951C>G; p.Arg651Gly (SNP
rs182512508, without frequency information), which was
detected in two siblings of family Taiwan 1. The two
affected brothers shared the same CUBN genotype, while
residue Arg651 is 100% conserved among vertebrates
and considered detrimental by PolyPhen-2 (score = 1.0).
Thus, p.Arg651Gly is likely a pathogenic change. In pa-
tient MGA66, the observed missense change CUBN
c.2486C>T; p.Ser829Leu likewise affected a highly con-
served residue which was considered damaging by
PolyPhen-2 (score = 1.0). Thus, we concluded that
p.Ser829Leu is an IGS mutation.
The change in intron 10 of AMN (c.1170-6C>T) in pa-

tient MGA81 was found in the aforementioned unstable
GC-rich region of AMN. It is therefore possible that this
change disturbed the mRNA processing as seen with
several other intronic changes in this region but RNA
was not available to study it further.
In patient MGA48, only GIF c.469T>C; p.Phe157Leu

was detected as a candidate mutation. The IF residue
Phe157Leu is conserved among vertebrates with the
exception of the dog, which has a leucine residue in
place of phenylalanine, thus its exact functional conse-
quences remain to be studied (PolyPhen-2 score =
0.003). However, it was never detected in any other in-
dividual or control other than the older sister of the
patient, who is healthy and has a different GIF geno-
type. Thus, p.Phe157Leu is a likely culprit in this Leba-
nese girl with Cbl deficiency since the other two genes
were excluded. Finally, in patient D2914, missense
change GIF c.938C>T; p.Thr313Ile is likely pathogenic
(100% conserved among vertebrates and PolyPhen-2
score = 0.999).

Discussion
Genetic defects in intestinal malabsorption
The spectrum of mutations in the three genes CUBN,
AMN, and GIF includes nonsense, missense, insertion-
deletion, splice site, and intronic mutations, as well
as large deletions first reported herein (Table 1 and
Additional file 1).
Given that many mutations appear to be private or

restricted to a specific ethnicity or population, estimates
of the population frequency of IGS or IFD and their
underlying mutations are difficult to make and cannot
be extrapolated across populations. Thus, we purposely
avoided estimating the frequency of IGS or IFD as we
believe it will not be sufficiently accurate to be useful.
However, many mutations affect specific ethnic groups;
as a result, ancestry was demonstrated to facilitate gen-
etic testing [23,44,46]. The genetic heterogeneity led us
to develop an ethnicity-focused screening strategy that
targets founder mutations first (Figure 2).

CUBN
Our analyses of 53 families or cases with 33 CUBN
mutations show that no IGS mutation was found beyond
exon 28 and one of the deletions (case MGA47) covered
the same region. This observation is of clinical utility be-
cause it suggests that defects beyond exon 28 have no
impact on the absorption of Cbl, as long as the protein
is stable. In fact, it was shown that a homozygous frame-
shift mutation in exon 53 of CUBN (c.8355delA;
p.Ser2785fs) only caused proteinuria [47]. Moreover, a
missense variant in exon 57 (c.8950A>G; p.Ile2984Val)
was associated with albuminuria [48]. Thus, mutations in
CUBN cause IGS apparently only when they affect the
cubilin-amnionless interaction domain (amino-terminal
third of cubilin, exons ~1-20; [21]) or the IF-Cbl binding
site (CUB domains 5–8, exons 21–29; [43]; Figure 1). It
is possible that genomic deletions in CUBN are more
common and could account for some of the missing
mutations and unresolved cases. In individual patients
however, deletions can be difficult to detect unless the
deletion is homozygous. It is therefore prudent to include
parents and siblings in the genetic analysis since the gen-
etic information (heritable SNPs and other variants)
might expose genomic deletions. Technically, multiplex
ligation-dependent probe amplification (MLPA) or next-
generation sequencing should detect deletions but an
MLPA kit for CUBN is currently not available and
whole-genome sequencing for routine diagnostics is still
in its infancy.

AMN
Mutations in AMN are dominated by founder events
and a mutational hotspot in the region of introns 8–11
that includes the transmembrane domain in exon 10
[45]. Its analysis was technically challenging because of a
highly repetitive GC-content and required high-quality
genomic DNA. Moreover, in individuals heterozygous
for AMN c.1006+34_48del15bp the wildtype allele
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Figure 2 Flow-diagram of the genetic diagnostic strategy in
inherited cobalamin malabsorption.
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dropped-out during PCR; thus in cases that show seem-
ingly non-Mendelian inheritance of rare changes, a
detailed molecular follow-up by RT-PCR or various PCR
primer combinations is advisable.

GIF
A single IFD patient with a homozygous 4-bp deletion
in GIF was first described in 2004 [25]. The finding of
additional mutations in GIF [24] was the result of a
genome-wide search among patients with suspected IGS
that were previously excluded for defects in CUBN and
AMN [15].
While IF is conserved among Amniota (mammals,

birds, and reptiles) the level of conservation among
lower vertebrates is less clear. This analysis is compli-
cated by the fact that the genes for transcobalamin 2
(TCN2) and haptocorrin (transcobalamin 1; TCN1) are
similar as a result of ancient gene duplication events [1].
The three genes share the same genomic structure with
9 exons and a Cbl binding domain, pointing to a com-
mon ancestral gene [49,50]. Despite the coding and
structural similarities, PCR-based analysis of three genes,
GIF, TCN1, and TCN2 has not caused technical pro-
blems. Conversely, transcript analysis of GIF using RNA
derived from blood cells has proved difficult because the
gene is not expressed in that tissue. Even successive
rounds of PCR with nested primers and have not
succeeded in amplifying the GIF mRNA. This is not par-
ticularly surprising since haptocorrin and transcobala-
min are the specific Cbl-transporters in the blood [10],
and haptocorrin is also found in saliva [51]. Thus, tran-
script studies of GIF will likely require gastric sampling
to obtain the parietal cells that produce IF.

Genotype-phenotype observations
Because of the limited clinical details that were available
from some patients and the fact that many mutations
were private, meaningful phenotype-genotype correla-
tions in IGS and IFD were limited. The course of ther-
apy and the health care environment varied widely, as
did the age of onset of the symptoms. The most obvious
clinical sign, megaloblastic anemia, was not always
present and is not unique to IGS or IFD [6]. On the
other hand, early hematological and neurological signs
can go unnoticed for many months or years. Generally,
clinical diagnosis was based on excluding various differ-
ential diagnoses, so many patients were only referred for
genetic testing several months after acute problems
began. However, treatment with parenteral Cbl was often
initiated before a firm diagnosis could be made. Thus,
the necessary information to predict the age of onset,
the degree of manifestations, and the course of the dis-
ease depending on the type of mutation is lacking.
Proteinuria is found in many IGS cases [19] but has

rarely been seen in IFD except in two cases from our
series, MGA67 and MGA79. We suspect that these two
cases had proteinuria unrelated to their IFD defects. The
root cause of the proteinuria in IGS is due to the fact
that mutations in CUBN or AMN not only prevent the
intestinal uptake of Cbl but may also impair the renal re-
absorption of proteins [21,52]. Since amnionless is
required to localize cubilin to the luminal membrane in
the intestines and kidneys [34,53], deleterious mutations
in AMN often cause simultaneous Cbl deficiency and
proteinuria since the cubam complex is no longer able
to mediate uptake of its many ligands [52]. In CUBN,
mutations in the cubilin-amnionless interaction domain
(amino-terminal third of cubilin, exons ~1-20; [21]) or
total loss of the protein may similarly lead to concurrent
Cbl deficiency and proteinuria, while mutations in the
IF-Cbl binding site (CUB domains 5–8, exons 21–29;
[43]) can cause Cbl deficiency without proteinuria [19].
The finding of mono-symptomatic proteinuria due to
mutations in CUBN (c.8355delA; p.Ser2785fs; [47] and
c.8950A>G; p.Ile2984Val; [48]) pointed to the fact that
not all mutations in this gene have the same physio-
logical consequences. Thus, defects in cubilin have pleio-
tropic effects, e.g. for kidney function [54].
Lack of Cbl not only causes anemia but also impairs

neurological function [3]. In young infants, hypotonia,
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seizures, developmental delay, and brain atrophy often
occur during the first six months [55]. In severe cases,
the patients can perish during early childhood. In older
children, movement disorders, dementia, delirium, or
psychosis were observed [56]. One IGS case (MGA12)
with mutations in AMN showed severe psychosis, which
only responded to high-dose Cbl therapy [33]. It was
suggested that an active Cbl transport mechanism at the
blood–brain barrier exists, and that amnionless may be
part of this mechanism. Consequently, it is possible that
certain mutations in CUBN or AMN affect the neuro-
logical presentation differently.
Mouse models deficient in CUBN [57] or AMN [45]

have been developed and proved embryonic lethal.
Given the deleterious nature of many CUBN and AMN
mutations in humans, it has become clear that the role
of cubilin and amnionless in rodent development is dis-
tinct from the role that these proteins play in humans.
Thus far, it is not obvious what functions cubilin and
amnionless have in primate embryogenesis [58]. IGS was
also observed in dogs with two different mutations in
the canine AMN gene and the phenotype was similar to
that observed in humans [53]. In an attempt to define
the differences between rodents and higher mammals
regarding AMN [14], we created Amn knock-in mice
with three different human IGS mutations (data not
shown). The high degree of sequence conservation be-
tween human and mouse permitted the identical recre-
ation of the human IGS mutations in the mouse. Two of
these mutations (Amn c.14delG; p.Gly5fs and Amn
c.683_730del48; p.Gln228_Leu243del) were homozy-
gously lethal, since we never observed any homozygous
pups among over 100 offspring in each case (data not
shown). On the other hand, the Norwegian missense
mutation Amn c.122C>T; p.Thr41Ile was viable in the
homozygous mouse and without any apparent pheno-
type (data not shown). Recently, conditional Cubn
knock-out mice were created [59], which should permit
a better definition of the essential role of cubilin in
mouse embryogenesis and renal function.

Other candidate genes
We have screened 27 cases or sibships (18%) for muta-
tions in CUBN, AMN, and GIF without detecting any
pathogenic mutations (Table 1). For seven families the
involvement of some or all of the genes was genetically
excluded based on different genotypes in two affected
siblings (JCA1, MGA40, MGA41, MGA46, MGA85,
MGA89, and MGA90). Among the 20 remaining single
patients, patients MGA62 and MGA91 were thought to
suffer from a defect in the TCN1 gene that encodes hap-
tocorrin. Patient MGA91 carried a novel heterozygous
change in intron 5 (TCN1 c.747+3A>C) that was suspect
but no RNA was available to study potential splicing
aberrations. So far, two truncating mutations have been
described in TCN1 [60] but to what degree haptocorrin
deficiency plays a role in Cbl deficiency remains to be
studied.
It is conceivable that we have missed some mutations.

These could be located in introns or regulatory
sequences distant from the exons. However, many cases
carried two distinct alleles of the IGS/IFD genes, thus
we would have expected two different disease mutations,
which would be less likely to be missed. Overall, we have
achieved a sensitivity of 82% in our mutation screening
strategy (Figure 2).
Based on their role in transport of Cbl, alternative can-

didate genes FUT2 [61-63], CD320 [64,65], LMBRD1
[42], and ABCC1 [66] were screened by DNA sequen-
cing in a selected group of unresolved cases but no
mutations were found (Additional file 1 and [67]).
Deficiency of transcobalamin 2 (TC2; OMIM275350)

with mutations in TCN2 [68,69] represents an alterna-
tive diagnosis. Symptoms include megaloblastic anemia,
diarrhea, vomiting, failure to thrive, recurring infec-
tions, and mental retardation. Thus, many clinical fea-
tures overlap with IGS and IFD, although mental
retardation is not usually associated with IGS and IFD.
We sequenced a few atypical cases for mutations in
TCN2 (MGA6, MGA23, and MGA62) but found no
mutation. In general, TC2 deficiency manifests rapidly
in the first 1–2 months after birth and was excluded
in most cases before referral for IGS/IFD mutation
screening.
Accordingly, Cbl pathway genes yet to be identified

might explain some of these remaining cases of inher-
ited Cbl deficiency. Based on the documented Cbl up-
take pathway (Figure 3), a likely location for failure
could be the loading of TC2 with Cbl in the entero-
cyte to form holo-TC2 or the export of holo-TC2
from of the enterocyte. This particular part of the Cbl
transport is not well understood but similarities to
the intracellular cblF defect (OMIM277380) that
affects the lysosomal membrane transport [70] could
be postulated.

Prospective screening recommendations and future
prospects
With the gathered information on ethnicity-specific muta-
tions, it has become feasible to perform targeted screening
for common or local founder mutations (Figure 2 and
Additional file 1). However, human migrations change the
genetic make-up of populations and it is important to
trace ethnic ancestry cautiously.
The observation that mutations in CUBN are limited

to the first 28 exons has simplified the genetic analysis
(Figure 1) but the need to screen three genes remains
unchallenged for now because clinical tests cannot



Tanner et al. Orphanet Journal of Rare Diseases 2012, 7:56 Page 12 of 15
http://www.ojrd.com/content/7/1/56
reliably distinguish IGS and IFD. Parallel, whole-exome
or whole-genome sequencing using next generation
technology might permit concurrent screening of the
three genes. However, clinical laboratory regulations and
ethical concerns about the additional sequence data pro-
duced will delay the routine introduction of the technology.
Consequently, Sanger-based exon-by-exon sequencing will
remain the method of choice for the coming years to con-
firm IGS and IFD.
For clinical diagnostics, a new non-radioactive Cbl

absorption test may eventually replace the Schilling
test [71]. The patient is given a dose of cyano-Cbl,
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remain to be answered but such a test would stream-
line clinical diagnostics.

Conclusions
Elucidating the genetic basis of inherited Cbl malab-
sorption has provided the tools to verify the diagnosis
in over 80% of the cases on the molecular level. In
addition, studying this rare phenotype has elucidated
the mechanisms and pathway of Cbl uptake in great
detail. Our study triples the number of Cbl malab-
sorption cases molecularly analyzed and provides a
comprehensive overview of the genetic patterns that
cause this genetically heterogenous disease. The muta-
tional patterns we have identified should simplify gen-
etic diagnostics.
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